How to make the tensorflow hub embeddings servable using tensorflow serving?

I am trying use an embeddings module from tensorflow hub as servable. I am new to tensorflow. Currently, I am using Universal Sentence Encoder embeddings as a lookup to convert sentences to embeddings and then using those embeddings to find a similarity to another sentence.

My current code to convert sentences into embeddings is:

with tf.Session() as session:[tf.global_variables_initializer(), tf.tables_initializer()])
  sen_embeddings =

Prepared_text is a list of sentences. How do I take this model and make it a servable?


Right now you probably need to do this by hand. Here is my solution, similar to previous answer but more general - show how to use any other module without guessing input parameters, as well as extended with verification and usage:

import tensorflow as tf
import tensorflow_hub as hub
from tensorflow.saved_model import simple_save

export_dir = "/tmp/tfserving/universal_encoder/00000001"
with tf.Session(graph=tf.Graph()) as sess:
    module = hub.Module("") 
    input_params = module.get_input_info_dict()
    # take a look at what tensor does the model accepts - 'text' is input tensor name

    text_input = tf.placeholder(name='text', dtype=input_params['text'].dtype, 
        shape=input_params['text'].get_shape())[tf.global_variables_initializer(), tf.tables_initializer()])

    embeddings = module(text_input)

        inputs={'text': text_input},
        outputs={'embeddings': embeddings},

Thanks to module.get_input_info_dict() you know what tensor names you need to pass to the model - you use this name as a key for inputs={} in simple_save method.

Remember that to serve the model it needs to be in directory path ending with version, that's why '00000001' is the last path in which saved_model.pb resides.

After exporting your module, quickest way to see if your model is exported properly for serving is to use saved_model_cli API:

saved_model_cli run --dir /tmp/tfserving/universal_encoder/00000001 --tag_set serve --signature_def serving_default --input_exprs 'text=["what this is"]'

To serve the model from docker:

docker pull tensorflow/serving  
docker run -p 8501:8501 -v /tmp/tfserving/universal_encoder:/models/universal_encoder -e MODEL_NAME=universal_encoder -t tensorflow/serving                                                                                           

Posted on by grz.miejski

Currently, the hub modules cannot be consumed by Tensorflow Serving directly. You will have to load the module into an empty graph and then export it using the SavedModelBuilder. For example:

import tensorflow as tf
import tensorflow_hub as hub

with tf.Graph().as_default():
  module = hub.Module("")
  text = tf.placeholder(tf.string, [None])
  embedding = module(text)

  init_op =[tf.global_variables_initializer(), tf.tables_initializer()])
  with tf.Session() as session:
        inputs = {"text": text},
        outputs = {"embedding": embedding},
        legacy_init_op = tf.tables_initializer()        

This will export your model (to the folder /tmp/serving_saved_model) in the desired format for serving. After this, you can follow the instructions given in the documentation here:

Posted on by Anonymous